Bedroom Chest: Case Joinery

Time has been short over the past few years, so progress has been slow, but the case is finally glued together.  It is four feet wide and about 3 feet tall and is dovetailed.  Unlike my file cabinet, the dovetails are half-blind, and will be invisible once I attach the top.  The first challenge was to select the lumber and glue the panels together.   I started with lumber that came in seven foot lengths (from the lumberyard) or 3.5 foot lengths (from the independent sawyer), so I wasn’t sure I had enough material.  The discovery that some of the seven foot material was defective created additional uncertainty.

I decided to glue together panels butcher-block style using my shorter offcuts, and use the resulting boards in the less visible interior parts of the cabinet.  However, I soon realized that this would not suffice: I would still run out of wood.  So I hit the lumber yard and got some plain sawn hard maple to use for the interior panels.

tails_sm

Notice the front panel has two plain sawn boards in the center, flanked by quarter sawn boards at either edge. This will be the bottom of the cabinet, and will always be covered by stuff, so it won’t be seen.

The first joint to cut was eighteen inch wide half-blind dovetails at the bottom of the case.  I laid out the tails using dividers and a bevel gauge, and cut them.  I proceeded next with the pins, which presented several difficulties.  The first one was marking them.  I had great difficulty finding a way to align the boards in my shop for marking due to the four foot length of the tail board.   If my bench were not against a wall this would be simple, but instead I had to balance the boards on edge and clamp them together to do the marking.  At one point during this process the tail board fell off the bench.  You can see the dent at the top right (front board) in the picture.

I sawed the pins and then attempted to hammer the kerfs deeper using a small scraper I used previously for this job.  Evidently the wood species makes a difference for this technique.  This was easy with mahogany, which is soft.  But with hard maple, and the larger scale of the joint, the scraper folded over from hammer blows and became wedged into the kerf so tightly that I need pliers to extract it.   I like this technique, so I bought a specialized tool for extending kerfs.  This tool, with its solid brass back and large handle solved both of the problems.

kerfing1

kerfing2
But my problems weren’t over yet.  Chiseling out the waste can be done in various different ways, but it seems that they ultimately involve taking some thin shavings parallel to the socket wall.  Charlesworth’s clever technique with a slightly thick guide block guarantees a slight undercut so the joint will fit.  At least, that’s the theory.  And it worked great on board number one.  But on the second board the grain direction went the wrong way, and no matter how I tried to execute this technique, the wood would rip up.  I finally gave up and deployed the router plane to try to fix the problem.  (One thing I didn’t try: sharpening my chisels.  I wonder if that would have made a difference.)

pins3_sm

pins.shoulder.plane_sm

pins2_sm

After finishing the joint I cut a rabbet along the rear edge to hold a plywood back.  I didn’t do it earlier because I didn’t have the plywood for the back and wasn’t sure about the thickness.  This was unfortunate because it turns out the dovetail should have been cut to accommodate  the through rabbet.

Again, grain direction presented a challenge.  I cut the rabbet on the first board with my rabbet plane and got a nice crisp rabbet.  On the second board the grain went the wrong way for my plane and it reversed.  The result was nasty tear-out.  I tried going in the other direction using various other planes.  I’m not sure if the problem was hard to fix at this point because the existing surface was already so rough, or if it was just impossible to cut the wood cleanly in either direction.   I thought about buying the left handed rabbet plane, but instead I gave up and cut the joint with the router on the router table.  And I found that climb cutting was essential to get a smooth finish from the router.

For the horizontal divider I cut a 1/2″ dado using my HNT Gordon dado plane.  This plane worked very well against my clamped fence.   (Maybe I need their moving fillister plane for cutting rabbets, with it’s 60 degree cutting angle.)

dadoplane1_sm

dadoplane2_sm

Cutting a 1/2″ dado using a dado plane. The board that will go in this dado is 3/4″ thick.

I only have the 1/2″ dado plane, but none of my boards are 1/2″ thick.  The horizontal divider boards that goes in this dado is is 3/4″ thick.  Two solutions are apparent: widen the dado or trim the board.  In this case, I trimmed the board by cutting a 1/4″ rabbet at each end.   The case also includes a pair of vertical dividers, which are only 5/8″ thick.   In this case, I took the other approach, opting to widen the dado.  This proves to be possible with care by shifting the fence over and cutting again.  (I fails if the extra cut is less than 1/8″—the plane falls off the edge and cuts a slope in this case.)  In all my trials and in 5 out of 6 dados on the cabinet the nicker did its job and the plane produced a smooth exit, but I did encounter one case of spelching, where a large chip pulled off.  I wonder what caused that.

To conserve wood I made the top of the case from three rails instead of a solid panel.   This time I did the dovetail joint correctly to fill in the through rabbet at the ends.   I decided to get a saddle square dovetail marker, and I must say it really did streamline the tail marking.   It is nice to  quickly mark the square line across the edge and the sloping line down the face of the board without having to fuss with lining up the marks.

A dovetail saddle marker like this is helpful because you can mark across the top and then down the front in one step.

The resulting rail ends:

The assembled joint looks like this, with the extra block to fill in the gap in the side panel:


These joints certainly won’t win any prizes. They may be the worst fit dovetails on the internet. I think the first dovetails I ever cut looked quite a bit better.  But these joints, as bad as they look, didn’t rattle around once assembled, and the big gaps will be hidden when the top goes on.  Luckily the chunk that broke out on the right side didn’t break through the surface of the board.  The only part that will be visible is at the back of the case, and that part is tight:


The final step before the glue-up was to cut grooves for the sliding doors. I’ve had a lot of trouble cutting grooves (and rabbets along the grain) on this project, so I wasn’t sure of the best approach. My first attempt was to mark the edges of the groove, and chisel out along the groove. This left a block of waste in the groove, which I attempted to remove using the Veritas combination plane, which I selected because it could be configured for left-handed use as required by the grain (except for the section where the grain is reversed). The plow plane has a circular nicker blade but this plane has short straight nicker blades that are apparently meant to bend outward for adjustment with small set screws. Unfortunately, I didn’t realize that the nickers needed to be removed for this job. Because I was removing a strip of wood with a space on either side, the nickers weren’t engaged in the wood and they splayed out and started cutting along the keeper material adjacent to the groove. I didn’t notice the problem until the board was badly scarred with many cuts along the side of the groove. I attempted to repair the damage by inserting patch pieces, thinking that the second groove would hide the joint, but I miscalculated the location of the second groove. I may redo the really obvious patch shown here.

Ugly patch, right in the center.

I made a second patch that is several inches long which blends somewhat better. Can you find it?

Less obvious long patch.

I tried cutting the groove undersized using the combination plane and then using a chisel to clean up the side walls afterward, but the walls tended to crumble and it was hard to make them smooth. I did the last groove using the combination plane with its nickers set to the full width of the groove and that worked the best.

Finally the it was time for glue. The resulting glued up cabinet still lacks the back and the top, which I think will make it easier to fit the drawers.

Here it is with the top and backsplash boards resting on the case.

The next step is to decide on the final shape for the top and glue the backsplash and to together. After that, I will make the drawers, and I have to resolve the last major design question: what will the drawer pulls look like?

Advertisements

Bedroom Chest: First Steps

chestdesign1My latest big project is a chest to go at the end of the bed. We had a bench there, but piles of clothing and linens covered its surface, and hence I could never actually sit on it. Storage in a small, old house is scarce, so I decided to replace the bench with a storage cabinet. The standard chest at the end of a bed opens on the top. If we had such a chest we’d never be able to open it, so my design features sliding doors and drawers. The top remains available for piles of clothing, and a backsplash prevents the piles from dripping off onto the bed.  The current design appears above, though I still have some uncertainty about the drawer widths. Work has been proceeding at a glacial pace over the past couple years.

This cabinet will be made out of quarter sawn hard maple. I had difficulty buying quarter sawn maple. I found a guy with a chainsaw who sold me a small lot cut from one log. It had some very nice boards in it, some up to 11 inches wide, but the boards were only 46 inches long, which won’t work for a four foot wide cabinet.   Nobody has 11 inch wide material; most online vendors said their boards were four inches wide, which wasn’t appealing. I finally ordered some wood that was over 5 inches wide with some nine inch boards.  The length ended up being seven feet, the worst possible length for my four foot wide cabinet.   As I began to work the wood I found that the guy with the chainsaw delivered nice looking, wide boards, but they were pretty badly twisted, so jointing the lumber by hand was a lot of work. But the real lumber yard delivered wood that was riddled with cracks across the face of the boards. I’m guessing this is the drying defect known as “honeycombing.”

drying_defect

This board has several cracks across its surface that you can see if you enlarge the image.

For the panels of the sliding doors I selected some spalted quilted maple material. This too, turned out to suffer from drying defects. I had the option of returning it or working with it and ended up deciding to fill the cracks and move ahead, rather than trying to locate a different panel. I tried to plane the material slightly to decrease the size of the cracks…but they got bigger instead. I chose to fill the cracks with black epoxy, hoping that it would match the spalting lines and blend in. It seems like most people think this looks fine, but I’m less enthusiastic.

As always, the process of selecting wood for different parts of the project went slowly. I began by choosing wood for the sides because I wanted to use the short, wide pieces there. Then came the task of selecting rail and stile material. One thing I love about quarter sawn wood is the ray flecking, but for the rails and stiles I wanted it to be really more rift sawn: straight grained without fleck to provide a good frame to the busy internal panel. Then it was time to get to work. I cut the grooves using my Veritas plow plane.

groove_side

Note the fuzzy tear out towards the back end of the plane on the front edge of the groove.

I had a lot of problems with tear out while making these cuts. Part of the problem was user error: if I tipped the plane even a bit it could rip out a chunk on the side wall of the groove. But because the wood is quarter sawn, the edge, where I’m cutting the groove, has badly behaved grain. I did find that the front edge of the groove came out worse than the back one every time. I think this is because I can tip the plane toward me but the fence prevents me from tipping it the other way. I switched my reference around and referenced from the back of the panels to get the best looking show side. But it seems that ultimately to get a nice groove in material with reversing grain you have to precut the groove edges with a chisel.

The spalted maple panels were very porous, and when I started applying shellac the liquid quickly vanished into the wood. When the finishing was complete I discovered that the wood had warped considerably. I tried to flatten it by putting some shellac on the back. This helped a bit, but the panel remained warped. People use to say you needed to finish both sides of a panel to prevent warping. Then this idea got attacked as a myth. I wonder if I had finished both sides exactly the same would the panel have stayed flat and made the assembly easier—it’s more difficult to squeeze a warped panel into a groove.

curvedpanel

This panel was flat before I applied shellac. Note the shadow of the straight edge on the wood.

I cut mortise and tenon joints to hold the panels together. The joints weren’t my best fitting. I had been wondering whether to drawbore or not, and decided I had better drawbore.  A drawbore is a joint where a peg is inserted through the joint but holes are misaligned so that the peg has to bend a little bit and it strongly forces the joint together.  Based on Schwarz’s recommendation I offset my 1/4” drawbore holes by 3/32” for my first door. I made riven white oak pegs using a dowel plate and cut a taper at the starting end. When I went to hammer the pegs home, though, I had some problems. I had tested the joint with drawbore pins and it seemed to be OK. But the pegs splintered inside the work, with only part of the peg emerging on the back side. Additionally, they forced the joint to come together crookedly so that the door didn’t lie flat on the bench. When I remembered to put glue on the peg it worked a bit better, but I only remembered one out of four times to do that. Application of a mallet and clamping the door flat onto the bench seemed to correct the problem.  The pictures below show four pegs from the back.  The top left is a peg that was lubed with glue and went through neatly.  The bottom left peg opened a gap, the top right peg was somewhat mangled and the bottom right beg lost a quarter of itself somewhere in the hole, leaving a gaping space.

pegback1pegback2pegback3pegback4

For the second door I adjusted the procedure. I used a 1/16” offset and I put the pegs into a cup of glue so I wouldn’t forget to lubricate them with the hide glue I was using. This door went together much more smoothly, without the problems I had on door number one.  Some of the pegs look bad on the back of the door, but as these are sliding doors, nobody will see them.  The front pegs look good.

pegfront1pegfront2

The last issue is securing the panels so that they stay centered in the groove if the panel shrinks or expands.  I’ve seen special foam balls sold for this job, but that solution wasn’t appealing.  It sounds like a standard solution is to hammer in a nail at the panel center but I realized I wasn’t sure how the nail should go in.  If I tried to angle it then the nail would almost completely miss the panel.  I had some 1.25″ cut nails handy.  I trimmed them to be about 1/2″ long, oriented them correctly to the grain of the frame and tapped them into pilot holes.  Nothing split, and hopefully they actually pierced the panels, so they should do the job.  I wonder if a dab of glue would have been an easier solution?  Would that hold well enough if I can only squirt it into an already assembled panel from the outside?

doors

Finished door panels. Note that the rails are overly long and still need to be cut flush with the stiles.

Now it’s back to lumber selection. I need to select boards to use for the top of the cabinet, and then see if I have enough wood to make the dividers. I am thinking that I may have to glue up three foot lengths into a four foot long panel butcher block style to use the lumber I have on hand.

I haven’t quite figured out the proportions for the drawers.  Here is a subtle change in the drawer proportions.  Which is better?

chestdesign1

Drawers at 2:1 ratio. Center drawer 9″ wide.

chestdesign2

Drawers at 5:3 ratio. Center drawer 10.5″ wide.

Another outstanding design question is: can I do something with the drawers to unify them with the much darker spalted panels on the sliding doors below. Perhaps spalted maple drawer pulls would have this effect?