Charging Station

After a few years of testing and a few changes to the original design, the time came for the final version:  we got more devices and the prototype wasn’t big enough.

I made the final version from canarywood scraps I had lying around.  The space on the wall allowed me to fit a thirty inch wide shelf to hold the devices.  Hopefully this will suffice for all the devices the household requires.  To make the shelf I glued together two pieces of canarywood, drilled holes at the base of each slot, and finally cut out the thirteen slots with a hand saw.   Shaping and smoothing these slots and, finally, sanding them was extremely time consuming.   My saw cuts weren’t precisely tangent to the holes I drilled, so those transitions all needed attention.  I had to round over all of the top corners.  Finishing end grain is always more work, and this design creates a lot of exposed end grain that is hard to get to.   Is there a way to change the design to make the build easier?

I glued a continuous strip of the EPDM rubber along the slots. I punched a 7/64″ hole and then cut a slit leading up to the hole.

My final selection for the cable gripping rubber was EPDM rubber, 1/16 inch thick, and 40A hardness.   I originally used 1/8 inch holes.  The 1/8″ holes are great when they work, because they grip the cables tightly, but they are too small for some thick USB cables.   I had to increase the size to 7/64″ to accommodate these fatter cables.  This does mean that the rubber almost never actually grips the cable.  It just confines it.  For my prototype I glued on the rubber using epoxy, but the rubber peeled off in some places.  In looking for an alternative I found Nexabond, a slow curing cyanoacrylate adhesive, which seems to dissolve the rubber and create a very strong bond.  Nexabond is now sold as Rapid Fuse.  I used the variety marketed for wood.   I found that it’s not possible to clean it off the rubber, so I had to be careful when applying it to avoid excessive squeeze out, but to use enough to secure the rubber all the way to the edge of the wood.

The rubber loosely grips the cables. The USB plug can rest in the space in front of the rubber in each slot.

The cable management box was hard for me to design.   My original design left the wrapped cables exposed.  I found that users often leave the ends of the cables dangling over the cable management box rather than securing them above on the shelf.  The dangling cables combined with the exposed wrapped cables form a very busy visual image, and it is hard to identify the loose ends that you may want to plug into your dying device.  In the prototype, I added a cover secured with a pair of magnets.  Maybe this approach could work somehow, but two problems would need to be addressed.  I was never sure where to put the cover after removing it, and I found it hard to close it because the cover would snap suddenly into place and I had to make sure it didn’t capture any cables over its whole width.   However, a normal hinged door would extend 15 inches, which seems unwieldy.  I  considered doors that swiveled down, but one of them would collide with the USB hub.  Finally, after talking with a friend about my design challenge, I revisited the idea of a hinged door and hit on the idea of a door that folds in half.

Two doors, each with a hinge in the center so they can fold in half.  Note the continuous grain lines across all four parts of the door.

The center section opens first.


If necessary you can open the second section of the doors, which have their own separate magnetic latches.

Selecting hinges was another challenge.   I hadn’t been planning to spend so much on hardware for this project.  The hidden hinges in the middle of each door are Soss Invisible hinges, and I ended up using Brusso brass butt hinges to mount the doors to the frame.   The Soss hinges come in a brass finish, which would have blended better, but when I found these on ebay for half price I decided I’d take them.  I love magnets, but getting the right magnetic force seems to be an ongoing challenge.  In this case, I mounted 3/8 inch magnets using screw in cups.  The resulting magnetic force was excessive.   One solution is to recess the mating washers farther into the wood (to increase the distance), but once the magnets are installed it is impossible to remove them.  In fact, once the steel cups are installed I find that they fit so tightly it is impossible to remove them, even before screwing them in.  Covering the magnets with high friction disks provided some extra separation that weakened the magnetic force enough to make the doors useful, though they do still stick shut a little bit more strongly than I would prefer.

For securing the cables I use a pair of 3/8 inch dowels and wrap the cables in a figure eight fashion.  I have seen quite a few gizmos for managing cables and, from what I can tell, none of them works as well as just wrapping cables in a figure eight; the cables don’t tangle, and you don’t need a special device.  Try it with your earbuds.  A strip of velcro holds each cable in place.  I used a two inch wide strip of white velcro hook material for the back of the box and I secured the cables using 3/4 inch black loop strips.   Reportedly the loop side of the velcro wears out first, so I used it in the more easily replaceable location.   Along the top edge of the box I made small cutouts for rubber cable holders.  These hold the cables up if you open the box.

The doors open all the way out and can tuck up against the wall at the sides. We secure the cables using figure eight wrapping onto two posts, with a strip of velcro to hold them in place. I chose white velcro for the background so it’s easy to see the black velcro that holds down the cables.

Installation of the Soss hinges requires a weird shaped mortise 3/8 inches wide with rounded ends and a deeper center section.  I drilled this using a centering drill guide and a brad point bit.  I had some trouble with hole depth and later found myself trying to deepen parts of the mortises with chisels.  But eventually I got the mortises cut.  For hardware installation I chose to use machine screws, both for the Soss hinges and the Brusso hinges.  Many people recommend machine screws for wood, especially when the screws are small and short.  I thought I would be installing and removing the screws many times, so this supported my decision to use machine screws.  In the case of the Soss hinges, the fit in the mortises was very tight.  They weren’t going  anywhere.  It was hard to take the hinges out after test fitting them in the holes.  Strength of the screws wouldn’t have made a difference.  And since it was so hard to install and remove the hinges I ended up doing it only one time and doing the finishing with the hinges installed.   I also broke two 4-40 taps cutting the threads.  In retrospect, I think this happened because I pre-drilled holes that were a size too small.

I installed the Brusso hinges using chisels and a router plane, a process that I enjoyed much more than drilling with a guide.  And I didn’t break the tap when cutting threads for 2-56 screws.  Using machine screws here seemed like the right thing to do.  The hinges didn’t stay in their mortises from friction alone like the Soss ones, and the use of machine screws enabled me to use longer screws on the frame and shorter ones on the door without having to buy two boxes of screws.  My wire cutters cut easily through the brass machine screws so I could make the lengths I needed.   I did end up installing and removing the hinges several times.

One disappointment is that the Soss hinges have a little bit of slop in them.  I’m not sure if I loosened them up somehow while prying them out of their mortises after test fitting, but if I close the doors without trying to force them upward they don’t create an even gap.

Uniform gap between the doors.

Uneven gap between the doors, narrower at the top.


The final component of the charging station is the hub holder.   As long as we charge devices using cables, the rest of the ensemble can remain unchanged, but this hub is the part most likely to change in the future.  It already changed: I have a new hub with more ports.  I didn’t want to work too hard on this part so I used a simple design that is very easy to make and somewhat adaptable—unlike the prototype it can at least accommodate charging hubs of varying length.  This design requires no complex joinery since the wood grain all runs in the same direction.  I tried to shape it to echo the curves of the shelf at the top, with the the back section sticking out to the sides for easy screw mounting.

Very simple hub holder design with open ends.

I think overall this is a great design for a charging station. It only uses wall space, not desk space, and keeps all our devices out of the way. I’m happy with the final result. The only thing that could be improved is the location of cable holding holes in the rubber. These holes are about an inch behind the front of the slot, and this is a little bit too far. Three fourths of an inch would be better.


Bedroom Chest: First Steps

chestdesign1My latest big project is a chest to go at the end of the bed. We had a bench there, but piles of clothing and linens covered its surface, and hence I could never actually sit on it. Storage in a small, old house is scarce, so I decided to replace the bench with a storage cabinet. The standard chest at the end of a bed opens on the top. If we had such a chest we’d never be able to open it, so my design features sliding doors and drawers. The top remains available for piles of clothing, and a backsplash prevents the piles from dripping off onto the bed.  The current design appears above, though I still have some uncertainty about the drawer widths. Work has been proceeding at a glacial pace over the past couple years.

This cabinet will be made out of quarter sawn hard maple. I had difficulty buying quarter sawn maple. I found a guy with a chainsaw who sold me a small lot cut from one log. It had some very nice boards in it, some up to 11 inches wide, but the boards were only 46 inches long, which won’t work for a four foot wide cabinet.   Nobody has 11 inch wide material; most online vendors said their boards were four inches wide, which wasn’t appealing. I finally ordered some wood that was over 5 inches wide with some nine inch boards.  The length ended up being seven feet, the worst possible length for my four foot wide cabinet.   As I began to work the wood I found that the guy with the chainsaw delivered nice looking, wide boards, but they were pretty badly twisted, so jointing the lumber by hand was a lot of work. But the real lumber yard delivered wood that was riddled with cracks across the face of the boards. I’m guessing this is the drying defect known as “honeycombing.”


This board has several cracks across its surface that you can see if you enlarge the image.

For the panels of the sliding doors I selected some spalted quilted maple material. This too, turned out to suffer from drying defects. I had the option of returning it or working with it and ended up deciding to fill the cracks and move ahead, rather than trying to locate a different panel. I tried to plane the material slightly to decrease the size of the cracks…but they got bigger instead. I chose to fill the cracks with black epoxy, hoping that it would match the spalting lines and blend in. It seems like most people think this looks fine, but I’m less enthusiastic.

As always, the process of selecting wood for different parts of the project went slowly. I began by choosing wood for the sides because I wanted to use the short, wide pieces there. Then came the task of selecting rail and stile material. One thing I love about quarter sawn wood is the ray flecking, but for the rails and stiles I wanted it to be really more rift sawn: straight grained without fleck to provide a good frame to the busy internal panel. Then it was time to get to work. I cut the grooves using my Veritas plow plane.


Note the fuzzy tear out towards the back end of the plane on the front edge of the groove.

I had a lot of problems with tear out while making these cuts. Part of the problem was user error: if I tipped the plane even a bit it could rip out a chunk on the side wall of the groove. But because the wood is quarter sawn, the edge, where I’m cutting the groove, has badly behaved grain. I did find that the front edge of the groove came out worse than the back one every time. I think this is because I can tip the plane toward me but the fence prevents me from tipping it the other way. I switched my reference around and referenced from the back of the panels to get the best looking show side. But it seems that ultimately to get a nice groove in material with reversing grain you have to precut the groove edges with a chisel.

The spalted maple panels were very porous, and when I started applying shellac the liquid quickly vanished into the wood. When the finishing was complete I discovered that the wood had warped considerably. I tried to flatten it by putting some shellac on the back. This helped a bit, but the panel remained warped. People use to say you needed to finish both sides of a panel to prevent warping. Then this idea got attacked as a myth. I wonder if I had finished both sides exactly the same would the panel have stayed flat and made the assembly easier—it’s more difficult to squeeze a warped panel into a groove.


This panel was flat before I applied shellac. Note the shadow of the straight edge on the wood.

I cut mortise and tenon joints to hold the panels together. The joints weren’t my best fitting. I had been wondering whether to drawbore or not, and decided I had better drawbore.  A drawbore is a joint where a peg is inserted through the joint but holes are misaligned so that the peg has to bend a little bit and it strongly forces the joint together.  Based on Schwarz’s recommendation I offset my 1/4” drawbore holes by 3/32” for my first door. I made riven white oak pegs using a dowel plate and cut a taper at the starting end. When I went to hammer the pegs home, though, I had some problems. I had tested the joint with drawbore pins and it seemed to be OK. But the pegs splintered inside the work, with only part of the peg emerging on the back side. Additionally, they forced the joint to come together crookedly so that the door didn’t lie flat on the bench. When I remembered to put glue on the peg it worked a bit better, but I only remembered one out of four times to do that. Application of a mallet and clamping the door flat onto the bench seemed to correct the problem.  The pictures below show four pegs from the back.  The top left is a peg that was lubed with glue and went through neatly.  The bottom left peg opened a gap, the top right peg was somewhat mangled and the bottom right beg lost a quarter of itself somewhere in the hole, leaving a gaping space.


For the second door I adjusted the procedure. I used a 1/16” offset and I put the pegs into a cup of glue so I wouldn’t forget to lubricate them with the hide glue I was using. This door went together much more smoothly, without the problems I had on door number one.  Some of the pegs look bad on the back of the door, but as these are sliding doors, nobody will see them.  The front pegs look good.


The last issue is securing the panels so that they stay centered in the groove if the panel shrinks or expands.  I’ve seen special foam balls sold for this job, but that solution wasn’t appealing.  It sounds like a standard solution is to hammer in a nail at the panel center but I realized I wasn’t sure how the nail should go in.  If I tried to angle it then the nail would almost completely miss the panel.  I had some 1.25″ cut nails handy.  I trimmed them to be about 1/2″ long, oriented them correctly to the grain of the frame and tapped them into pilot holes.  Nothing split, and hopefully they actually pierced the panels, so they should do the job.  I wonder if a dab of glue would have been an easier solution?  Would that hold well enough if I can only squirt it into an already assembled panel from the outside?


Finished door panels. Note that the rails are overly long and still need to be cut flush with the stiles.

Now it’s back to lumber selection. I need to select boards to use for the top of the cabinet, and then see if I have enough wood to make the dividers. I am thinking that I may have to glue up three foot lengths into a four foot long panel butcher block style to use the lumber I have on hand.

I haven’t quite figured out the proportions for the drawers.  Here is a subtle change in the drawer proportions.  Which is better?


Drawers at 2:1 ratio. Center drawer 9″ wide.


Drawers at 5:3 ratio. Center drawer 10.5″ wide.

Another outstanding design question is: can I do something with the drawers to unify them with the much darker spalted panels on the sliding doors below. Perhaps spalted maple drawer pulls would have this effect?

Charging Station Prototype

We have enough rechargeable devices that we needed a way to charge them that was less chaotic, that didn’t leave devices on the floor.  I looked at commercially available options, but nothing seemed to do what I want.  So I started constructing my own wall mounting approach.

My idea was to have a shallow shelf that devices rest on, with some mechanism to hold and organize the cables and a box to hold the charger hub.   I thought initially that cables could rest in slots that were narrow enough so that the plug wouldn’t fall through:


Cables can slip into the skinny slot to hold them in place. The wider part of the slot permits the cable end to stick down when a device is charging.

This approach didn’t work because the cables sometimes pull forward out of the slots.  The next idea was to use rubber to hold the cables in place.  But which type of rubber?  McMaster has an overwhelming number of options, both types of rubber, thicknesses, and hardnesses.   I tested several options:

dsc09092It seemed like the 1/32″ EPDM with a Shore hardness of 40A was promising.  So the prototype looks like this:

dsc00043I realized that velcro alone did not suffice to manage the cables, so I added the cable wrapping posts.  Also it seemed like the EPDM rubber was not holding cables as well as I expected, especially with thicker cables.  So I tried a change in the design with a thicker piece of rubber and a hole to hold the cable.  This seems to work better at holding cables, though it is more difficult to get them in and out.


The black rubber has a hole punched in it to hold the cable. This does seem to be more secure, though choosing the right rubber is still an issue.

We’ve had this in use for a while now, but one problem I’ve noticed is that the users don’t like to leave the cables secured in the rubber slots.  They prefer to just leave them dangling.  Does this mean the rubber slots are unnecessary?

How can this design be improved?

Couch Cabinet

dsc00014After finishing the Utilitarian Cabinet I said I was going to lay off the plywood for a long while. Events conspired against me: we needed a small table or cabinet to fill the narrow space beside the couch and the remaining walnut plywood was just right for the job.

For this cabinet I borrowed a Festool Domino to make the joints for the case and drawers.  The Domino is a lot nicer than dowels. It can make one pair of tight fitting mortises for alignment and loose fitting holes elsewhere, which makes the joint much easier to assemble and disassemble than dowels.  This cabinet went together without the struggles that we had with the dowel-joined Utilitarian Cabinet—I was able to do it without a helper. The drawers went together very easily as well, and the dominos helped in assembling the miter joints in the pedestal and in affixing the pedestal to the case.

I also experimented with the undermounting Blum Tandem-Plus Blumotion drawer slides, which waste less space at the sides of the drawers.   With the drawer cavity only seven inches wide I wanted to make the widest drawers I could.  Understanding the requirements for these slides proved to be rather difficult. Blum is very bad about posting detailed information, and they also sell different products in Canada than they do in the USA, so Lee Valley has products that are not otherwise available in the USA. It wasn’t immediately obvious to me—though it should have been—that the undermounting slides would have a minimum drawer width. It is not easy to figure out what this minimum width is.  Lee Valley didn’t know, and when I asked Blum USA about the Canadian slides they couldn’t find the answer!  I eventually learned that the Tandem-Plus would work on my narrow drawers as long as I used special “locking devices”.  The undermounting slides waste less horizontal space but they consume over an inch of vertical space.   This led to a problem when I positioned the handle without checking the position carefully and the mounting screw hole hit the drawer bottom.


See the recess I carved into the drawer bottom to allow me to attach the drawer pull?

When I went to fit the drawers into the cabinet they worked right the first time. This is a huge contrast to my experience with the side mounting slides I used in the Utilitarian Cabinet where I had to spend hours on drawer fitting.  I had a brief problem with it when I did the final test fit and the drawer hit the case.  It turned out I had accidentally pressed the levers that raised the drawer.  Lowering the drawer back to the correct position was very easy.  The finished drawers open and close very smoothly and much more easily than the drawers in the Utilitarian Cabinet, though we’re not sure we like the Blumotion drawer closing action.  Because the drawers are tall and narrow I used the wood with the grain running vertically and I mounted the handles vertically.


Note the continuous grain on the mahogany drawer fronts.

The corner in which the cabinet sits is not square.  It was necessary to curve the edge considerably to get a reasonable fit.  dsc00021

Kitchen Organization

This post is a round up of small kitchen organization projects, inspired by a few recently completed ones, but including some projects from years ago.

Organize a Bottom Freezer

This one isn’t very interesting as a woodworking project, but might be interesting to people looking for a solution to the problem of organizing a bottom freezer. Our old refrigerator had a top freezer, and I had containers in the door, labeled on the side, and shelves in the freezer space. The new freezer has a big open cavity and a sliding top drawer. How could I use this space effectively? When I looked around online for ideas on freezer organization, I didn’t see anything that looked both effective and efficient.

For the sliding top drawer, my solution is to use these air-tight containers that can be turned sideways and labeled on their sides.
For labeling I find that the Pentel Wet Erase Chalk Marker works well. It resists water, but can be washed off of smooth surfaces easily when desired (though it mysteriously does not come off in the dishwasher). The only problem is that these particular containers have a rough area on the side, from which the pen does not clean off.

For organizing the bottom some people put things in containers, but this wastes scarce freezer space. I made wooden dividers to partition the big, open space into sections sized to quart freezer bags.


The left side is divided into six spaces. The right side is divided into four larger spaces.


I cut these dividers from quarter inch plywood using my band saw, but a jigsaw would work too. There is no need to finish them.  Observe how the dividers fit into the gap in the freezer frame at the far right and left sides.


These are the dividers for the right side. The top one is cut to match the slope of the back send of the freezer. The lower piece, which runs left to right when assembled, has a small notch to fit onto the plastic divider that came with the freezer.


Measuring Cups & Spoons

We have a lot of measuring cups and spoons. Some of them hang on hooks from holes in the handles, but we had a plastic set with no hang holes that I hung using magnets. The nice thing about the magnets was that it was very easy to hang them or grab them. The troublesome thing was that adhering magnets to the polyethylene measuring cups required an expensive adhesive and they would eventually fall off. I got new stainless steel measuring cups and their different shape and increased weight made the magnets a more troublesome solution. So I came up with this approach that exploits the little tabs on the ends of the cups. (However the one cup measure has no tab and requires a little support bar underneath.)


This measuring cup rack is angled 45 degrees to the wall. It might be slightly easier to use if it was a bit closer to horizontal.

I attempted to drill the large holes using an expansive auger bit. These tools seem to be plentiful on ebay but they  don’t seem to work. (Why did they make so many if the tools didn’t work?)  In each case the center hole cut by the lead screw would grow until the bit could wobble around in the hole with nothing guiding the cut. The deepest I could cut was about 3/16″ before it became impossible to make further progress. I had to cut out the centers with a coping saw and finish the edges with a drawknife. With a drill press and a circle cutter this job would be easy, in theory, but when I equipped my drill press with this unbalanced cutter the lateral forces caused the chuck to fall off.  The chuck continued to fall off periodically after that, until I learned the trick of freezing the arbor.

I marked the sizes using punches and then inking them with pens.  Curiously some pens, like the Pigma Micron, seem to be ruined by writing on wood.  They never started writing again after I used them for this job.

For years we hung the other measuring cups on a store bought rack, which really didn’t work well. The hooks would fall off, and it wasn’t well organized. So to go with the rack above I made a rack with designated hooks:


For the measuring spoons I made this rack by attaching veneer to a square foot sheet of plywood:

Pen and Paper on the Fridge


We need pen and paper available at the fridge. To make a pen holder I started with a small scrap of cherry.  I used the router to cut out a recess in the block of wood and I installed some magnets on the back.  If I was going to make one of these today, I’d probably glue together two layers to avoid using the router.

To hold paper we used a plastic rack for many years, but its weak magnets resulted in frequent trips to the floor, and it eventually cracked beyond repair.  I made a much nicer wooden replacement from quarter sawn cherry I had left over from the file cabinet.

Now we just need to figure out how to keep people from walking off with the pens.


Room for four pens.


Five quarter inch rare earth magnets keep this firmly in place on the refrigerator.


Look at the fantastic quarter sawn fleck figure.


This needed to be thicker than the pen holder. I made it from several pieces rather than hollowing it out by router. It is also much newer than the pen holder. Is the lighter color due to fewer years of darkening? Or is it a lighter colored tree?


Next time I think I would use a smaller number of larger magnets. But this holds securely even on the slightly curved surface of our new refrigerator.

Hanging Utensils on the Wall

We bought a rack for hanging utensils on the wall, but then we ran out of room. So I made a pegboard out of oak. I built it using frame and panel construction with oak plywood for the panel. I used a piece of pegboard to guide the drilling of the holes in the oak plywood.


The Talon pegboard hooks hold utensils well, though I did have to clip off some of them with wire cutters to get a good fit for some items.


From the front the oak frame blends in with the cabinet. The non-woodworkers don’t notice the change in grain.


Cooling Rack

For mounting cooling racks I made magnetic bars by setting 1/8″ thick half-inch rare earth magnets into 1/4″ thick wooden bars. The magnets hold the bar onto the fridge and also hold the steel cooling racks. They worked well—until we switched to a stainless steel rack that was only barely magnetic. Each of the three bars could hold its own steel cooling rack, but all three bars together barely keep the stainless one on the fridge.  A better design would probably make use of hooks instead of magnets to hold the stainless steel racks.


Three bars with magnets embedded in them.


Barely holding up a stainless cooling rack.

Draining rack by the sink—fail

We have the dish soap and hand soap by the sink and that area stays constantly wet, leading to mold. I tried building a draining rack to improve this situation. I used the router to cut grooves in a piece of ipe.  (I think I killed the router bit.) Underneath the groves are perpendicular so water drains all the way through.  The first problem was that the wood stayed wet underneath.  I discovered that tiny insects had taken up residence.   To correct this problem I raised the wood up off the counter on rubber feet.  This got rid of the bugs, but I now have brown staining coming from the wood.  It seems that wood is not the right material for this application.


Draining soap rack made from ipe.



Rack in use.


Roorkhee Chair v. 2


My original Roorkhee chair was comfortable, but it was very low to the ground and deeply reclined. I prefer a more erect seating style, and thought I might raise the chair and make it less tilted. This proved to be considerably more difficult than I anticipated. It was easy enough to test the effect of taller legs by putting the first one up on blocks, but what happens if I decrease the seat tilt? I made some new back legs in pine with holes in different spots for testing and I found that raising up the back to make the seat more level wasn’t enough by itself. It wasn’t comfortable like that. It needed some other changes like a decrease in seat depth. I didn’t have a good way to prototype that. Decreasing the seat depth also leads to decreasing the width (if you want to keep the frame square to avoid complicating the assembly) and it’s not clear that would be a good thing.  In addition it seemed like the location of the pivot point for the back rest needed to change.  What seemed like a small change to the design turned out instead to requires global alterations.  So I gave up and made a chair whose seat is farther from the ground, but with no other changes.


Another change with version two was the choice of leather. For the first one I used discount leather. That leather was too stretchy, especially for the arms. So this time I took a look at leather from Wickett & Craig, which Schwarz had used in some of his later chairs. Schwarz used the Oiled Latigo, but when I looked at the samples, all of the oiled Latigo leathers were almost black. I ended up choosing the English Bridle leather which is apparently the same leather, not oiled. The Latigo comes in a 6-8 oz thickness but the English Bridle is not split, meaning the leather comes off the cow the thickness it is. I could have paid an extra $1.10 per square foot to have it split and re-dyed, but decided to go ahead and use it as it came in a 8-10 oz weight.

One problem with the original Roorkhee was the narrow width of the arms. I noticed that I would try to rest my arms on the arm rests and they would fall off, so I corrected that in this version with arms that are wider.


The wider arm rest is definitely an improvement.

For the first chair I cut the leather and put it on the chair. But I subsequently learned about finishing the edges, which definitely produces a much nicer look. To do this I first beveled the edges with a leather edge beveling tool. Then I applied burnishing compound and burnished the leather vigorously with a leather burnishing tool. Finally I applied edge finish to the burnished edges.


The top edge is rounded and smooth after burnishing and edge painting.


The roundover on the front edges was intended to make the backrest more comfortable, though the leather is so stiff that it may not matter in this case.

For this chair I made the legs from canarywood scraps I had on hand—the only 8/4 material I had enough of. The wood is pretty, but I think it is harder than the ideal for hand powered reaming. (It is a good bit harder than hard maple.) I had more trouble cutting the mortises than on the first chair, and the finished joints were worse. I used maple dowels, and I ended up making the back supports out of some bland apple sapwood. From sitting in the original chair I had noticed that my shoulders and back would rub uncomfortably on the edges of the backrest supports, so for this version I was careful to give them a big roundover, though in the end it may not have mattered so much because of the heavy weight of the leather.

Here you can see the process of folding over the leather of the back rest. On the first chair, this part of the project was a little irregular, so I took more care this time, making measurements, keeping everything parallel, and clamping the pieces together before making the holes for the rivets. As it turns out, this particular measurement produced a very snug fit with the stiff leather I was using.


I determined the fold for the seat back by clamping the rail flush with the edge and folding the leather over for a snug fit. I marked the fold, removed the rail, and then clamped the leather down to punch the rivet holes.

The original design calls for square legs with a turned recess near the top and a turned taper towards the feet.  Schwarz implies that the turned recess at the top is important because it gives you a place to grip the chair.  My first one didn’t have this.  For the second one I cut an octagonal recess.  In order to do this I made a series of parallel crosscuts with the bandsaw and then cracked out the waste.   This produces a rough square recessed area.  Then I smoothed it out with the router plane, chair2_sm and then I marked out the proper edges and used rasps to remove the corners to transform the square into an octagon. The result looks pretty good, but in the end, the only function it serves is that it gives a space for the leather that is wrapped across the backrest to go when the backrest tilts.  I never grab the chair by these “handholds” because the frame just twists.  If I do another chair I think I might just make a single shallow cutout on the inside of the back legs for the leather and skip the rest of them.

Unlike the recess in the middle of the leg, the taper to the feet is simple to do without a lathe. I started by marking the octagon on the bottom of the leg and choosing the length of the taper to be 10.5 inches. Hand planes quickly removed the corners of the legs up to the octagon’s edges, leaving the shape shown below.
legtaper1Next I measured from one triangular facet to the opposite facet to find the spot where the thickness was equal to the 1.75 inch thickness of my leg stock. This is the right spot to start tapering the legs to get a regular octagonal cross section. I marked this starting line and then tapered down to the octagon’s boundary marked on the foot, finally obtaining the completed tapered octagon:

legtaper2When I picked 10.5 inches I figured vaguely that the length of the taper on the square sides would be a bit smaller, perhaps by a factor like the square root of two. But working out the correct formula would have revealed that if I tapered the corners 10.5 inches I would only get a taper on the faces that went up about 4.25 inches. If I do this again I’ll run the taper up much higher. The length of the taper on the flat side is (ST)d / (S2T) where S is the thickness of the full leg, T is the desired thickness at the tapered end, and d is the length of the taper on the corner of the leg stock.

chair3_smSo how does this chair work? Alas, it is not as comfortable as the first chair. One observation I made after sitting in the first chair for a while was that the way I constructed the seat, which seemed initially like an unfortunate mistake, was actually a fortuitous move. The seat came out considerably looser than I had intended, and this made the seat more comfortable by giving it mobility. I was careful to model this second chair after than one in that respect.  (I marked a line eleven inches from each edge and folded the leather to that line.)  However, the stiffer leather makes the back of the chair less comfortable. With the softer leather, the bottom part of the back rest conforms to my lower back and seems to give a remarkably comfortable support to the lower back. With this stiffer leather, the bottom of the backrest is simply too close to the seat and it pokes me on the butt without conforming at all.  This isn’t so comfortable. After giving the chair more use I may try trimming off a few inches from the bottom of the seat.

chair5_smBut if I do that I’ll need to solve another problem first. Often when one leaves the chair the back ends up in a strange position. I have tried various schemes to stop this from happening. A perhaps related problem is the propensity of the bolts holding the back on to loosen themselves. I tried to solve these problems by inserting a lock nut under the wing nut, by using a wing nut and a thumbscrew, by inserting leather washers to increase friction, and by inserting Belleville spring washers to try to create tension that keeps everything together. None of these things worked—it always unscrews itself with use. If I remove leather from the bottom of the seat I’ll be taking more weight from the bottom and I’ll create an imbalance that will be even more troublesome. The only solution I can see is to add weights to the bottom of the seat supports, though that still doesn’t address the problem of the chair unscrewing itself.


The backrest connected using a wingnut and a brass thumbscrew in an unsuccessful attempt to create a locknut combination that would keep the chair from unscrewing itself.

Roorkhee Chair

When Christopher Schwarz started talking up the Roorkhee chair I was intrigued because the project looked so easy.  Why not give it a try?  It would supply a use for some of the mahogany scraps left over from my table.  After completing the table and moving it out of the shop I started tidying up, and ran across those scraps.  In the blink of an eye the joinery for the chair was complete.  (Meanwhile the finishing of the table was proceeding at a glacial pace in the other room and wasn’t even half done.)

roorkhee2_sm roorkhee1_sm

Schwarz says that this project is very forgiving, and I have to agree.  A variety of things went wrong, and yet the chair still works fine.  This chair requires tapered mortise and tenon joints.  The tapered mortise and tenon is  new to me and is nice because the joint wedges together and is remarkably tight without glue.  I made a paper towel holder for the shop to test the joint and the requisite special tools, a reamer and giant pencil sharpener.  These tools enabled me to quickly and easily cut the joint.  Or not so easily.  My wrist got tired of spinning the tenon cutter on the hard maple dowels.  As I was finishing up the last one my eyes fell to the instructions sheet which read, “As supplied, the cutting edge is adequate for rough work in most woods; however, accuracy and surface finish will be improved with additional sharpening.”

After cutting the tenons I made the mortises by drilling a hole (which I did on the drill press) and then tapering it with the reamer.  Schwarz has a video where he shows how to test that your mortise is square using one of the rails you have cut, and how to correct when it’s not.  I carefully followed this method.  Once everything was done and I was assembling the chair I discovered that the tenons weren’t straight.  So in fact my test that the mortises were square was no good, and instead had encouraged me to produce crooked mortises.  Despite this problem, the chair works.

The challenge in making this chair is the leather work. The Popular Woodworking article gives detailed drawings for the woodworking part of this project, but is vague about the leather work. Advice is lacking on how to fit the leather parts to the structure. Schwarz has also simplified the design since he wrote the article, eliminating two straps that are screwed to the legs and substituting a pair of buckles on the wide strap that runs from side to side behind the front rail. In doing the leather work I had trouble cutting the leather the right length. The seat sags. When I made the aforementioned wide strap it was about a foot too long. I kept having to cut the buckle part longer and add more holes. When I made the back rest, I made one side a bit too tight, so you have to force the wooden rail in. Despite all of these problems, the chair works great and is remarkably comfortable: a very forgiving project indeed.

Another gotcha is the choice of leather. I used leather from Brettuns Village because it was cheap and Schwarz mentioned them. Brettuns Village is a leather discounter that gets random shipments from tanneries. The leather I selected was the only one in stock at the time that appeared suitable: it was 6 oz leather available in a “side”—that’s half a cow. I suspect, however, that this leather might be a bit stretchier than the ideal. And it also has a surface that is very easily marked by the lightest touch or scratch. The article gives no advice at all on how to lay out the leather pieces on the side of leather. It seems that leather does have a grain direction and in principle you should line up parts along the grain, which means parallel to the back of the animal. And you should avoid the belly area, which is weaker and more stretchy, and use the area along the back for parts that need to be strong. The leather arm rests are remarkably comfortable because they give a little and can twist and flex. But even though I tried to make the arm rests as tight as possible, you can see in the picture that they are sagging quite a bit. Perhaps I need to try making them from a double layer like Schwarz does in his later chairs. I asked Schwarz about choice of leather and the answer that emerged was that you can’t judge the leather by its weight. Despite being thick, it could be too stretchy or too soft. Instead, ask the leather vendor if the leather is suitable.

Schwarz warns on a blog post that if you don’t use straight grained dowels for the rails they may split.  He said only 10% of the dowels at the home store were straight grained enough.  I ordered mine from McMaster and found that all of them were nice and straight grained.

An interesting property of this chair is that the frame is not rigid and none of the joints are glued, so it can shift and flex. You don’t notice this when sitting in it, but if you pick it up, the structure moves. As a result, the structure can shift to accommodate uneven ground. Even with one leg a couple inches off the ground, all four legs rest solidly on the floor.


No wobbling on uneven terrain: all four legs stay on the ground.

This chair, as designed, is low to the ground. My next one will have longer legs. This chair also has the seat tipped backwards more than I’m comfortable with. I’ll make my next one closer to flat. I wonder if it would work to make a chair with two configurations, a more reclined option and a more level one. In the published design, the chair has handholds turned into the legs near the top. I figured I could dispense with these, since they were a complication to make with no lathe. However, I noticed that without them, the leather on the back rubs against the leg. These spaces provide clearance for the leather on the seat back when the back of the chair tips down. A problem not mentioned in the article is that the chair tends to unscrew itself in use. I asked Schwarz what he does about this problem and he said he puts in a square nut to jam against the wing nut. Why square? Because square nuts are earlier historically—not something I care about. I wonder, though, having deployed hex nuts, if the square ones would be easier to jam tightly without tools. I have trouble holding onto the hex nut.